The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats.
نویسندگان
چکیده
Cardiac function is adversely affected by pericardial adiposity. We investigated the effects of the heme oxygenase (HO) inducer, hemin on pericardial adiposity, macrophage polarization, and diabetic cardiopathy in Zucker diabetic fatty rats (ZDFs) with use of echocardiographic, quantitative real-time polymerase chain reaction, Western immunoblotting, enzyme immunoassay, and spectrophotometric analysis. In ZDFs, hemin administration increased HO activity; normalized glycemia; potentiated insulin signaling by enhancing insulin receptor substrate 1(IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (PKB)/Akt; suppressed pericardial adiposity, cardiac hypertrophy, and left ventricular longitudinal muscle fiber thickness, a pathophysiological feature of cardiomyocyte hypertrophy; and correspondingly reduced systolic blood pressure, total peripheral resistance, and pro-inflammatory/oxidative mediators, including nuclear factor κB (NF-κB), cJNK, c-Jun-N-terminal kinase (cJNK), endothelin (ET-1), tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1β, activating protein 1 (AP-1), and 8-isoprostane, whereas the HO inhibitor, stannous mesoporphyrin, nullified the effects. Furthermore, hemin reduced the pro-inflammatory macrophage M1 phenotype, but enhanced the M2 phenotype that dampens inflammation. Because NF-κB activates TNFα, IL-6, and IL-1β and TNF-α, cJNK, and AP-1 impair insulin signaling, the high levels of these cytokines in obesity/diabetes would create a vicious cycle that, together with 8-isoprostane and ET-1, exacerbates cardiac injury, compromising cardiac function. Therefore, the concomitant reduction of pro-inflammatory cytokines and macrophage infiltration coupled to increased expressions of IRS-1, PI3K, and PKB may account for enhanced glucose metabolism and amelioration of cardiac injury and function in diabetic cardiomyopathy. The hemin-induced preferential polarization of macrophages toward anti-inflammatory macrophage M2 phenotype in cardiac tissue with concomitant suppression of pericardial adiposity in ZDFs are novel findings. These data unveil the benefits of hemin against pericardial adiposity, impaired insulin signaling, and diabetic cardiomyopathy and suggest that its multifaceted protective mechanisms include the suppression of inflammatory/oxidative mediators.
منابع مشابه
JPET #200808 Title Page The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats
متن کامل
The Heme Oxygenase System Suppresses Perirenal Visceral Adiposity, Abates Renal Inflammation and Ameliorates Diabetic Nephropathy in Zucker Diabetic Fatty Rats
The growing incidence of chronic kidney disease remains a global health problem. Obesity is a major risk factor for type-2 diabetes and renal impairment. Perirenal adiposity, by virtue of its anatomical proximity to the kidneys may cause kidney disease through paracrine mechanisms that include increased production of inflammatory cytokines. Although heme-oxygenase (HO) is cytoprotective, its ef...
متن کاملThe Heme Oxygenase System Rescues Hepatic Deterioration in the Condition of Obesity Co-Morbid with Type-2 Diabetes
The prevalence of non-alcoholic fatty-liver disease (NAFLD) is increasing globally. NAFLD is a spectrum of related liver diseases that progressive from simple steatosis to serious complications like cirrhosis. The major pathophysiological driving of NAFLD includes elevated hepatic adiposity, increased hepatic triglycerides/cholesterol, excessive hepatic inflammation, and hepatocyte ballooning i...
متن کاملCardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats
Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...
متن کاملEplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes
BACKGROUND Cardiac steatosis and apoptosis are key processes in diabetic cardiomyopathy, but the underlying mechanisms have not been elucidated, leading to a lack of effective therapy. The mineralocorticoid receptor blocker, eplerenone, has demonstrated anti-fibrotic actions in the diabetic heart. However, its effects on the fatty-acid accumulation and apoptotic responses have not been revealed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 345 2 شماره
صفحات -
تاریخ انتشار 2013